Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 257(4): 479-493, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355264

RESUMEN

Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Genoma , Neoplasias , Carcinogénesis/genética , Genoma Humano/genética , Genómica/métodos , Humanos , Neoplasias/genética , Secuenciación Completa del Genoma/métodos
2.
Lancet ; 399(10324): 541-553, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123694

RESUMEN

BACKGROUND: Low-grade serous carcinoma of the ovary or peritoneum is characterised by MAPK pathway aberrations and its reduced sensitivity to chemotherapy relative to high-grade serous carcinoma. We compared the MEK inhibitor trametinib to physician's choice standard of care in patients with recurrent low-grade serous carcinoma. METHODS: This international, randomised, open-label, multicentre, phase 2/3 trial was done at 84 hospitals in the USA and UK. Eligible patients were aged 18 years or older with recurrent low-grade serous carcinoma and measurable disease, as defined by Response Evaluation Criteria In Solid Tumors version 1.1, had received at least one platinum-based regimen, but not all five standard-of-care drugs, and had received an unlimited number of previous regimens. Patients with serous borderline tumours or tumours containing low-grade serous and high-grade serous carcinoma were excluded. Eligible patients were randomly assigned (1:1) to receive either oral trametinib 2 mg once daily (trametinib group) or one of five standard-of-care treatment options (standard-of-care group): intravenous paclitaxel 80 mg/m2 by body surface area on days 1, 8, and 15 of every 28-day cycle; intravenous pegylated liposomal doxorubicin 40-50 mg/m2 by body surface area once every 4 weeks; intravenous topotecan 4 mg/m2 by body surface area on days 1, 8, and 15 of every 28-day cycle; oral letrozole 2·5 mg once daily; or oral tamoxifen 20 mg twice daily. Randomisation was stratified by geographical region (USA or UK), number of previous regimens (1, 2, or ≥3), performance status (0 or 1), and planned standard-of-care regimen. The primary endpoint was investigator-assessed progression-free survival while receiving randomised therapy, as assessed by imaging at baseline, once every 8 weeks for 15 months, and then once every 3 months thereafter, in the intention-to-treat population. Safety was assessed in patients who received at least one dose of study therapy. This trial is registered with ClinicalTrials.gov, NCT02101788, and is active but not recruiting. FINDINGS: Between Feb 27, 2014, and April 10, 2018, 260 patients were enrolled and randomly assigned to the trametinib group (n=130) or the standard-of-care group (n=130). At the primary analysis, there were 217 progression-free survival events (101 [78%] in the trametinib group and 116 [89%] in the standard-of-care group). Median progression-free survival in the trametinib group was 13·0 months (95% CI 9·9-15·0) compared with 7·2 months (5·6-9·9) in the standard-of-care group (hazard ratio 0·48 [95% CI 0·36-0·64]; p<0·0001). The most frequent grade 3 or 4 adverse events in the trametinib group were skin rash (17 [13%] of 128), anaemia (16 [13%]), hypertension (15 [12%]), diarrhoea (13 [10%]), nausea (12 [9%]), and fatigue (ten [8%]). The most frequent grade 3 or 4 adverse events in the standard-of-care group were abdominal pain (22 [17%]), nausea (14 [11%]), anaemia (12 [10%]), and vomiting (ten [8%]). There were no treatment-related deaths. INTERPRETATION: Trametinib represents a new standard-of-care option for patients with recurrent low-grade serous carcinoma. FUNDING: NRG Oncology, Cancer Research UK, Target Ovarian Cancer, and Novartis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Administración Oral , Adulto , Anciano , Carcinoma Epitelial de Ovario/patología , Femenino , Humanos , MAP Quinasa Quinasa 1/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/patología , Paclitaxel/administración & dosificación , Supervivencia sin Progresión , Nivel de Atención , Resultado del Tratamiento , Reino Unido , Estados Unidos
3.
Oncogene ; 40(44): 6235-6247, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34556814

RESUMEN

ISG15 is an ubiquitin-like modifier that is associated with reduced survival rates in breast cancer patients. The mechanism by which ISG15 achieves this however remains elusive. We demonstrate that modification of Rab GDP-Dissociation Inhibitor Beta (GDI2) by ISG15 (ISGylation) alters endocytic recycling of the EGF receptor (EGFR) in non-interferon stimulated cells using CRISPR-knock out models for ISGylation. By regulating EGFR trafficking, ISGylation enhances EGFR recycling and sustains Akt-signalling. We further show that Akt signalling positively correlates with levels of ISG15 and its E2-ligase in basal breast cancer cohorts, confirming the link between ISGylation and Akt signalling in human tumours. Persistent and enhanced Akt activation explains the more aggressive tumour behaviour observed in human breast cancers. We show that ISGylation can act as a driver of tumour progression rather than merely being a bystander.


Asunto(s)
Neoplasias de la Mama/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias de la Mama/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Endocitosis , Receptores ErbB/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Fosforilación , Pronóstico , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Análisis de Supervivencia
4.
HGG Adv ; 2(3)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34317694

RESUMEN

Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This identified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR < 0.05 that were >1 Mb away from known breast and/or ovarian cancer susceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer analysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk.

5.
Clin Cancer Res ; 27(11): 3201-3214, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33741650

RESUMEN

PURPOSE: The abundance and effects of structural variation at BRCA1/2 in tumors are not well understood. In particular, the impact of these events on homologous recombination repair deficiency (HRD) has yet to be demonstrated. EXPERIMENTAL DESIGN: Exploiting a large collection of whole-genome sequencing data from high-grade serous ovarian carcinoma (N = 205) together with matched RNA sequencing for the majority of tumors (N = 150), we have comprehensively characterized mutation and expression at BRCA1/2. RESULTS: In addition to the known spectrum of short somatic mutations (SSM), we discovered that multi-megabase structural variants (SV) were a frequent, unappreciated source of BRCA1/2 disruption in these tumors, and we found a genome-wide enrichment for large deletions at the BRCA1/2 loci across the cohort. These SVs independently affected a substantial proportion of patients (16%) in addition to those affected by SSMs (24%), conferring HRD and impacting patient survival. We also detail compound deficiencies involving SSMs and SVs at both loci, demonstrating that the strongest risk of HRD emerges from combined SVs at both BRCA1 and BRCA2 in the absence of SSMs. Furthermore, these SVs are abundant and disruptive in other cancer types. CONCLUSIONS: These results extend our understanding of the mutational landscape underlying HRD, increase the number of patients predicted to benefit from therapies exploiting HRD, and suggest there is currently untapped potential in SV detection for patient stratification.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Recombinación Homóloga/genética , Mutación/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN por Recombinación/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Femenino , Expresión Génica , Humanos , Secuenciación Completa del Genoma
6.
Cancer Epidemiol Biomarkers Prev ; 30(1): 217-228, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144283

RESUMEN

BACKGROUND: Accumulating evidence suggests a relationship between endometrial cancer and ovarian cancer. Independent genome-wide association studies (GWAS) for endometrial cancer and ovarian cancer have identified 16 and 27 risk regions, respectively, four of which overlap between the two cancers. We aimed to identify joint endometrial and ovarian cancer risk loci by performing a meta-analysis of GWAS summary statistics from these two cancers. METHODS: Using LDScore regression, we explored the genetic correlation between endometrial cancer and ovarian cancer. To identify loci associated with the risk of both cancers, we implemented a pipeline of statistical genetic analyses (i.e., inverse-variance meta-analysis, colocalization, and M-values) and performed analyses stratified by subtype. Candidate target genes were then prioritized using functional genomic data. RESULTS: Genetic correlation analysis revealed significant genetic correlation between the two cancers (rG = 0.43, P = 2.66 × 10-5). We found seven loci associated with risk for both cancers (P Bonferroni < 2.4 × 10-9). In addition, four novel subgenome-wide regions at 7p22.2, 7q22.1, 9p12, and 11q13.3 were identified (P < 5 × 10-7). Promoter-associated HiChIP chromatin loops from immortalized endometrium and ovarian cell lines and expression quantitative trait loci data highlighted candidate target genes for further investigation. CONCLUSIONS: Using cross-cancer GWAS meta-analysis, we have identified several joint endometrial and ovarian cancer risk loci and candidate target genes for future functional analysis. IMPACT: Our research highlights the shared genetic relationship between endometrial cancer and ovarian cancer. Further studies in larger sample sets are required to confirm our findings.


Asunto(s)
Neoplasias Endometriales/genética , Neoplasias Ováricas/genética , Carcinoma Epitelial de Ovario/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo
7.
Nature ; 583(7815): 265-270, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581361

RESUMEN

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Asunto(s)
Segregación Cromosómica/genética , Evolución Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animales , Reparación del ADN , Replicación del ADN , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Mutación , Neoplasias/patología , Selección Genética , Transducción de Señal , Intercambio de Cromátides Hermanas , Transcripción Genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
8.
Cancer Res ; 79(22): 5769-5784, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31582381

RESUMEN

The melanocyte-inducing transcription factor (MITF)-low melanoma transcriptional signature is predictive of poor outcomes for patients, but little is known about its biological significance, and animal models are lacking. Here, we used zebrafish genetic models with low activity of Mitfa (MITF-low) and established that the MITF-low state is causal of melanoma progression and a predictor of melanoma biological subtype. MITF-low zebrafish melanomas resembled human MITF-low melanomas and were enriched for stem and invasive (mesenchymal) gene signatures. MITF-low activity coupled with a p53 mutation was sufficient to promote superficial growth melanomas, whereas BRAFV600E accelerated MITF-low melanoma onset and further promoted the development of MITF-high nodular growth melanomas. Genetic inhibition of MITF activity led to rapid regression; recurrence occurred following reactivation of MITF. At the regression site, there was minimal residual disease that was resistant to loss of MITF activity (termed MITF-independent cells) with very low-to-no MITF activity or protein. Transcriptomic analysis of MITF-independent residual disease showed enrichment of mesenchymal and neural crest stem cell signatures similar to human therapy-resistant melanomas. Single-cell RNA sequencing revealed MITF-independent residual disease was heterogeneous depending on melanoma subtype. Further, there was a shared subpopulation of residual disease cells that was enriched for a neural crest G0-like state that preexisted in the primary tumor and remained present in recurring melanomas. These findings suggest that invasive and stem-like programs coupled with cellular heterogeneity contribute to poor outcomes for MITF-low melanoma patients and that MITF-independent subpopulations are an important therapeutic target to achieve long-term survival outcomes. SIGNIFICANCE: This study provides a useful model for MITF-low melanomas and MITF-independent cell populations that can be used to study the mechanisms that drive these tumors as well as identify potential therapeutic options.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/22/5769/F1.large.jpg.


Asunto(s)
Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Neoplasia Residual/genética , Transcripción Genética/genética , Pez Cebra/genética , Animales , Resistencia a Medicamentos/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Melanocitos/patología , Melanoma/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasia Residual/patología , Cresta Neural/patología , Proteínas Proto-Oncogénicas B-raf/genética , Células Madre/patología
9.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30519450

RESUMEN

Somatic structural variants undoubtedly play important roles in driving tumourigenesis. This is evident despite the substantial technical challenges that remain in accurately detecting structural variants and their breakpoints in tumours and in spite of our incomplete understanding of the impact of structural variants on cellular function. Developments in these areas of research contribute to the ongoing discovery of structural variation with a clear impact on the evolution of the tumour and on the clinical importance to the patient. Recent large whole genome sequencing studies have reinforced our impression of each tumour as a unique combination of mutations but paradoxically have also discovered similar genome-wide patterns of single-nucleotide and structural variation between tumours. Statistical methods have been developed to deconvolute mutation patterns, or signatures, that recur across samples, providing information about the mutagens and repair processes that may be active in a given tumour. These signatures can guide treatment by, for example, highlighting vulnerabilities in a particular tumour to a particular chemotherapy. Thus, although the complete reconstruction of the full evolutionary trajectory of a tumour genome remains currently out of reach, valuable data are already emerging to improve the treatment of cancer.


Asunto(s)
Variación Genética , Neoplasias/genética , Transformación Celular Neoplásica/genética , Roturas del ADN de Doble Cadena , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Neoplasias/patología , Neoplasias/terapia , Medicina de Precisión/métodos
10.
Br J Cancer ; 118(8): 1123-1129, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29555990

RESUMEN

BACKGROUND: Observational studies suggest greater height is associated with increased ovarian cancer risk, but cannot exclude bias and/or confounding as explanations for this. Mendelian randomisation (MR) can provide evidence which may be less prone to bias. METHODS: We pooled data from 39 Ovarian Cancer Association Consortium studies (16,395 cases; 23,003 controls). We applied two-stage predictor-substitution MR, using a weighted genetic risk score combining 609 single-nucleotide polymorphisms. Study-specific odds ratios (OR) and 95% confidence intervals (CI) for the association between genetically predicted height and risk were pooled using random-effects meta-analysis. RESULTS: Greater genetically predicted height was associated with increased ovarian cancer risk overall (pooled-OR (pOR) = 1.06; 95% CI: 1.01-1.11 per 5 cm increase in height), and separately for invasive (pOR = 1.06; 95% CI: 1.01-1.11) and borderline (pOR = 1.15; 95% CI: 1.02-1.29) tumours. CONCLUSIONS: Women with a genetic propensity to being taller have increased risk of ovarian cancer. This suggests genes influencing height are involved in pathways promoting ovarian carcinogenesis.


Asunto(s)
Estatura/fisiología , Carcinoma Epitelial de Ovario/epidemiología , Neoplasias Ováricas/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estatura/genética , Carcinoma Epitelial de Ovario/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Geografía , Humanos , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Neoplasias Ováricas/genética , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...